Summarizes the selected individual parameters: number of values, mean, median, quantiles and range.

summarize_parameters_distributions(run, parameters = NULL,
  quantiles = c(0.05, 0.25, 0.75, 0.95), baseline_only = TRUE)

Arguments

run

pmxploit NONMEM run object.

parameters

character vector of parameters names. Default is NULL, returning all individual parameters (random and post-hoc).

quantiles

numeric vector of quantiles. Default are 5th, 25th, 75th and 95th percentiles.

baseline_only

logical. Consider only the baseline (= first) values of the subjects. Default is TRUE.

Value

A data frame.

Examples

EXAMPLERUN %>% summarize_parameters_distributions()
#> # A tibble: 11 x 12 #> parameter n n_distinct mean median sd `5.0%` `25.0%` `75.0%` #> <fct> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 CL 527 493 1.68e-1 1.72e-1 3.05e-2 1.15e-1 1.58e-1 1.78e-1 #> 2 KON 527 1 5.59e+2 5.59e+2 0. 5.59e+2 5.59e+2 5.59e+2 #> 3 KSS 527 33 5.80e-1 5.80e-1 4.68e-5 5.80e-1 5.80e-1 5.80e-1 #> 4 KINT 527 507 1.29e-1 1.25e-1 2.62e-2 9.35e-2 1.13e-1 1.40e-1 #> 5 KDEG 527 520 1.38e+0 1.37e+0 4.46e-1 7.78e-1 1.09e+0 1.54e+0 #> 6 Q 527 500 5.03e-1 5.00e-1 3.30e-2 4.65e-1 4.92e-1 5.12e-1 #> 7 V1 527 523 4.59e+0 4.61e+0 1.30e+0 2.71e+0 3.54e+0 5.47e+0 #> 8 V2 527 1 2.61e+0 2.61e+0 0. 2.61e+0 2.61e+0 2.61e+0 #> 9 KA 527 496 6.53e-1 6.38e-1 2.52e-1 3.54e-1 5.62e-1 7.03e-1 #> 10 ALAG1 527 1 2.98e-2 2.98e-2 0. 2.98e-2 2.98e-2 2.98e-2 #> 11 F1 527 494 6.08e-1 5.95e-1 1.20e-1 4.62e-1 5.42e-1 6.48e-1 #> # … with 3 more variables: `95.0%` <dbl>, min <dbl>, max <dbl>
EXAMPLERUN %>% summarize_parameters_distributions(quantiles = seq(0.05, 0.95, 0.05))
#> # A tibble: 11 x 27 #> parameter n n_distinct mean median sd `5.0%` `10.0%` `15.0%` #> <fct> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 CL 527 493 1.68e-1 1.72e-1 3.05e-2 1.15e-1 1.31e-1 1.44e-1 #> 2 KON 527 1 5.59e+2 5.59e+2 0. 5.59e+2 5.59e+2 5.59e+2 #> 3 KSS 527 33 5.80e-1 5.80e-1 4.68e-5 5.80e-1 5.80e-1 5.80e-1 #> 4 KINT 527 507 1.29e-1 1.25e-1 2.62e-2 9.35e-2 1.01e-1 1.05e-1 #> 5 KDEG 527 520 1.38e+0 1.37e+0 4.46e-1 7.78e-1 8.72e-1 9.65e-1 #> 6 Q 527 500 5.03e-1 5.00e-1 3.30e-2 4.65e-1 4.80e-1 4.85e-1 #> 7 V1 527 523 4.59e+0 4.61e+0 1.30e+0 2.71e+0 2.94e+0 3.17e+0 #> 8 V2 527 1 2.61e+0 2.61e+0 0. 2.61e+0 2.61e+0 2.61e+0 #> 9 KA 527 496 6.53e-1 6.38e-1 2.52e-1 3.54e-1 4.19e-1 4.91e-1 #> 10 ALAG1 527 1 2.98e-2 2.98e-2 0. 2.98e-2 2.98e-2 2.98e-2 #> 11 F1 527 494 6.08e-1 5.95e-1 1.20e-1 4.62e-1 4.91e-1 5.12e-1 #> # … with 18 more variables: `20.0%` <dbl>, `25.0%` <dbl>, `30.0%` <dbl>, #> # `35.0%` <dbl>, `40.0%` <dbl>, `45.0%` <dbl>, `50.0%` <dbl>, `55.0%` <dbl>, #> # `60.0%` <dbl>, `65.0%` <dbl>, `70.0%` <dbl>, `75.0%` <dbl>, `80.0%` <dbl>, #> # `85.0%` <dbl>, `90.0%` <dbl>, `95.0%` <dbl>, min <dbl>, max <dbl>
EXAMPLERUN %>% summarize_parameters_distributions(quantiles = NULL)
#> # A tibble: 11 x 8 #> parameter n n_distinct mean median sd min max #> <fct> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 CL 527 493 0.168 0.172 0.0305 0.0508 0.336 #> 2 KON 527 1 559 559 0 559 559 #> 3 KSS 527 33 0.580 0.580 0.0000468 0.580 0.581 #> 4 KINT 527 507 0.129 0.125 0.0262 0.0630 0.285 #> 5 KDEG 527 520 1.38 1.37 0.446 0.515 4.84 #> 6 Q 527 500 0.503 0.500 0.0330 0.281 0.776 #> 7 V1 527 523 4.59 4.61 1.30 1.72 8.62 #> 8 V2 527 1 2.61 2.61 0 2.61 2.61 #> 9 KA 527 496 0.653 0.638 0.252 0.0464 3.09 #> 10 ALAG1 527 1 0.0298 0.0298 0 0.0298 0.0298 #> 11 F1 527 494 0.608 0.595 0.120 0.334 1
EXAMPLERUN %>% group_by(STUD) %>% summarize_parameters_distributions()
#> # A tibble: 99 x 13 #> # Groups: parameter [11] #> parameter Study n n_distinct mean median sd `5.0%` `25.0%` #> <fct> <ord> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 CL 0 30 30 0.213 0.204 0.0531 1.41e-1 0.187 #> 2 CL 1 24 24 0.172 0.171 0.0200 1.36e-1 0.160 #> 3 CL 2 55 55 0.170 0.173 0.0336 1.22e-1 0.162 #> 4 CL 3 24 24 0.184 0.179 0.0243 1.54e-1 0.171 #> 5 CL 4 72 72 0.148 0.151 0.0348 7.82e-2 0.127 #> 6 CL 5 149 144 0.171 0.174 0.0147 1.39e-1 0.169 #> 7 CL 6 60 60 0.167 0.172 0.0193 1.31e-1 0.163 #> 8 CL 7 61 60 0.162 0.172 0.0219 1.10e-1 0.161 #> 9 CL 8 52 52 0.152 0.161 0.0293 9.61e-2 0.145 #> 10 KON 0 30 1 559 559 0 5.59e+2 559 #> # … with 89 more rows, and 4 more variables: `75.0%` <dbl>, `95.0%` <dbl>, #> # min <dbl>, max <dbl>
EXAMPLERUN %>% group_by(STUD) %>% summarize_parameters_distributions(quantiles = NULL)
#> # A tibble: 99 x 9 #> # Groups: parameter [11] #> parameter Study n n_distinct mean median sd min max #> <fct> <ord> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 CL 0 30 30 0.213 0.204 0.0531 0.112 0.336 #> 2 CL 1 24 24 0.172 0.171 0.0200 0.125 0.215 #> 3 CL 2 55 55 0.170 0.173 0.0336 0.0839 0.291 #> 4 CL 3 24 24 0.184 0.179 0.0243 0.135 0.249 #> 5 CL 4 72 72 0.148 0.151 0.0348 0.0508 0.212 #> 6 CL 5 149 144 0.171 0.174 0.0147 0.101 0.201 #> 7 CL 6 60 60 0.167 0.172 0.0193 0.0861 0.192 #> 8 CL 7 61 60 0.162 0.172 0.0219 0.0933 0.198 #> 9 CL 8 52 52 0.152 0.161 0.0293 0.0595 0.234 #> 10 KON 0 30 1 559 559 0 559 559 #> # … with 89 more rows