Summarizes the selected continuous covariates: number of values, mean, median, quantiles and range.

summarize_continuous_covariates(run, covariates = NULL,
  quantiles = c(0.05, 0.25, 0.75, 0.95), baseline_only = TRUE)

Arguments

run

pmxploit NONMEM run object.

covariates

character vector of continous covariates names. Default is NULL, returning all continuous covariates.

quantiles

numeric vector of quantiles. Default are 5th, 25th, 75th and 95th percentiles.

baseline_only

logical. Consider only the baseline (= first) values of the subjects. Default is TRUE.

Value

A data frame.

Examples

EXAMPLERUN %>% summarize_continuous_covariates()
#> # A tibble: 8 x 12 #> covariate n n_distinct mean median sd `5.0%` `25.0%` `75.0%` `95.0%` #> <fct> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 Age (y) 527 58 52.5 56 13.0 24 46 62 70 #> 2 BMI (kg/… 527 438 28.0 27.4 4.60 21.5 24.7 30.7 36.7 #> 3 Baseline… 527 320 140. 134. 33.0 101 117. 157. 196. #> 4 Creatini… 527 517 109. 104. 30.4 67.6 87.3 128. 159. #> 5 Baseline… 527 291 2.55 2.39 1.07 1.22 1.81 3.08 4.63 #> 6 Glomerul… 527 480 94.1 90.8 21.1 66.6 79.6 105. 133. #> 7 Baseline… 527 437 7.66 6.99 3.06 3.73 5.61 9.14 14.0 #> 8 Weight (… 527 345 80.6 79.2 16.4 57.3 69.0 89.4 110. #> # … with 2 more variables: min <dbl>, max <dbl>
EXAMPLERUN %>% summarize_continuous_covariates(quantiles = seq(0.05, 0.95, 0.05))
#> # A tibble: 8 x 27 #> covariate n n_distinct mean median sd `5.0%` `10.0%` `15.0%` `20.0%` #> <fct> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 Age (y) 527 58 52.5 56 13.0 24 33 38 42 #> 2 BMI (kg/… 527 438 28.0 27.4 4.60 21.5 22.4 23.4 24.2 #> 3 Baseline… 527 320 140. 134. 33.0 101 106. 110. 114. #> 4 Creatini… 527 517 109. 104. 30.4 67.6 74.7 80.2 83.9 #> 5 Baseline… 527 291 2.55 2.39 1.07 1.22 1.46 1.6 1.71 #> 6 Glomerul… 527 480 94.1 90.8 21.1 66.6 70.2 75.3 77.6 #> 7 Baseline… 527 437 7.66 6.99 3.06 3.73 4.44 4.93 5.27 #> 8 Weight (… 527 345 80.6 79.2 16.4 57.3 60.5 63.9 66.8 #> # … with 17 more variables: `25.0%` <dbl>, `30.0%` <dbl>, `35.0%` <dbl>, #> # `40.0%` <dbl>, `45.0%` <dbl>, `50.0%` <dbl>, `55.0%` <dbl>, `60.0%` <dbl>, #> # `65.0%` <dbl>, `70.0%` <dbl>, `75.0%` <dbl>, `80.0%` <dbl>, `85.0%` <dbl>, #> # `90.0%` <dbl>, `95.0%` <dbl>, min <dbl>, max <dbl>
EXAMPLERUN %>% summarize_continuous_covariates(quantiles = NULL)
#> # A tibble: 8 x 8 #> covariate n n_distinct mean median sd min max #> <fct> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 Age (y) 527 58 52.5 56 13.0 18 75 #> 2 BMI (kg/m²) 527 438 28.0 27.4 4.60 18.8 44.6 #> 3 Baseline LDLC (mg/dL) 527 320 140. 134. 33.0 88.5 356 #> 4 Creatinine clearance (mL/mi… 527 517 109. 104. 30.4 38.1 253. #> 5 Baseline free PCSK9 (nM) 527 291 2.55 2.39 1.07 0 7.46 #> 6 Glomerular filtration rate … 527 480 94.1 90.8 21.1 42.6 187. #> 7 Baseline total PCSK9 (nM) 527 437 7.66 6.99 3.06 2.36 19.6 #> 8 Weight (kg) 527 345 80.6 79.2 16.4 45.8 154.
EXAMPLERUN %>% group_by(STUD) %>% summarize_continuous_covariates()
#> # A tibble: 72 x 13 #> # Groups: covariate [8] #> covariate Study n n_distinct mean median sd `5.0%` `25.0%` `75.0%` #> <fct> <ord> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 Age (y) 0 30 23 38.1 35.5 15.5 18.5 24.5 50 #> 2 Age (y) 1 24 16 33.8 35 12.3 19 23 41.8 #> 3 Age (y) 2 55 29 48.9 52 13.2 22.1 41.5 59 #> 4 Age (y) 3 24 17 35.7 36 9.71 21.3 29 42.8 #> 5 Age (y) 4 72 31 50.9 54 10.8 28.6 44 59 #> 6 Age (y) 5 149 38 57.4 58 10.1 39 50 65 #> 7 Age (y) 6 60 30 58.2 59.5 8.93 44.0 50.8 65 #> 8 Age (y) 7 61 31 53.8 55 9.77 36 50 60 #> 9 Age (y) 8 52 20 60.8 61 4.63 53.6 58 64 #> 10 BMI (kg/… 0 30 30 26.4 26.6 2.60 22.3 24.4 28.5 #> # … with 62 more rows, and 3 more variables: `95.0%` <dbl>, min <dbl>, #> # max <dbl>
EXAMPLERUN %>% group_by(STUD) %>% summarize_continuous_covariates(quantiles = NULL)
#> # A tibble: 72 x 9 #> # Groups: covariate [8] #> covariate Study n n_distinct mean median sd min max #> <fct> <ord> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 Age (y) 0 30 23 38.1 35.5 15.5 18 65 #> 2 Age (y) 1 24 16 33.8 35 12.3 18 53 #> 3 Age (y) 2 55 29 48.9 52 13.2 18 65 #> 4 Age (y) 3 24 17 35.7 36 9.71 20 54 #> 5 Age (y) 4 72 31 50.9 54 10.8 21 65 #> 6 Age (y) 5 149 38 57.4 58 10.1 24 75 #> 7 Age (y) 6 60 30 58.2 59.5 8.93 37 73 #> 8 Age (y) 7 61 31 53.8 55 9.77 25 74 #> 9 Age (y) 8 52 20 60.8 61 4.63 49 72 #> 10 BMI (kg/m²) 0 30 30 26.4 26.6 2.60 21.7 30.5 #> # … with 62 more rows