quality_criteria.Rd
Computation of common quality criteria for evaluation of model predictions performance: standard qc (average fold error, maximal error), bias (mean predictions error), precision (root mean square error), Student's t-Test, correlation test and linear regression.
quality_criteria(run, predictions = "PRED", log_data = FALSE, alpha = 0.05, drop_empty_splits = FALSE)
run |
|
---|---|
predictions | character. Name of the predictions column in the result
tables. Default is |
alpha | numeric. Alpha risk. Used for bias confidence interval
computation and T-test comparing observations and predictions. Default is
|
drop_empty_splits | logical. Drop empty split groups from QC results. |
A list containing the quality criteria analysis results.
For quality criteria computations, residuals are computed based on the formula:
\(pred_err_i = pred_i - obs_i\)
Standard QC
Maximal Error: $$ME=max(|obs-pred|)$$
Absolute Average Fold Error:
$$AAFE=10^(mean(log10(pred/obs)))$$ For reference, see https://www.ncbi.nlm.nih.gov/pubmed/26696327
Bias: Mean Prediction Error (MPE)
Absolute:
mean(pred_err)
Confidence interval for a given alpha
Relative: mean(pred_err/obs)
Precision: Root Mean Square Error (RMSE)
Absolute: Student's t-Test estimate of
t.test((obs - pred)^2)
Confidence interval for a given
alpha
Relative: rmse/mean(obs)
Student's t-Test: observations vs predictions (paired, two-sided)
Returns estimate, statistic, p-value, degrees of freedom (parameter) and
confidence interval given alpha
.
Correlation test between observations and predictions
Returns estimate, statistic, p-value, degrees of freedom (parameter) and
confidence interval given alpha
.
Linear regression: \(pred = intercept + slope * obs\)
Returns intercept and slope estimates, standard errors, statistics and
p-values given alpha
.
EXAMPLERUN %>% quality_criteria()#> # A tibble: 1 x 9 #> n_observations standard bias precision t_test_obs t_test_res correlation_test #> <int> <list> <lis> <list> <list> <list> <list> #> 1 9391 <tibble… <tib… <tibble … <S3: htes… <tibble [… <S3: htest> #> # … with 2 more variables: linear_regression <list>, data <list>EXAMPLERUN %>% quality_criteria(alpha = 0.01)#> # A tibble: 1 x 9 #> n_observations standard bias precision t_test_obs t_test_res correlation_test #> <int> <list> <lis> <list> <list> <list> <list> #> 1 9391 <tibble… <tib… <tibble … <S3: htes… <tibble [… <S3: htest> #> # … with 2 more variables: linear_regression <list>, data <list>#> # A tibble: 2 x 10 #> Gender n_observations standard bias precision t_test_obs t_test_res #> <chr> <int> <list> <lis> <list> <list> <list> #> 1 Male 5178 <tibble… <tib… <tibble … <S3: htes… <tibble [… #> 2 Female 4213 <tibble… <tib… <tibble … <S3: htes… <tibble [… #> # … with 3 more variables: correlation_test <list>, linear_regression <list>, #> # data <list>#> # A tibble: 1 x 9 #> n_observations standard bias precision t_test_obs t_test_res correlation_test #> <int> <list> <lis> <list> <list> <list> <list> #> 1 1688 <tibble… <tib… <tibble … <S3: htes… <tibble [… <S3: htest> #> # … with 2 more variables: linear_regression <list>, data <list>#> # A tibble: 1 x 9 #> n_observations standard bias precision t_test_obs t_test_res correlation_test #> <int> <list> <lis> <list> <list> <list> <list> #> 1 7703 <tibble… <tib… <tibble … <S3: htes… <tibble [… <S3: htest> #> # … with 2 more variables: linear_regression <list>, data <list>#> # A tibble: 1 x 9 #> n_observations standard bias precision t_test_obs t_test_res correlation_test #> <int> <list> <lis> <list> <list> <list> <list> #> 1 728 <tibble… <tib… <tibble … <S3: htes… <tibble [… <S3: htest> #> # … with 2 more variables: linear_regression <list>, data <list>