plot_dv_vs_predictions.Rd
Dependent variables vs Predictions plot
plot_dv_vs_predictions(run = NULL, compartment = NULL, dv = "DV", predictions = "PRED", log_dv = FALSE, facetted = TRUE, smoothing_method = NULL, smoothing_se = TRUE, identity_line = TRUE, x_scale = "linear", y_scale = "linear", logticks_annotation = TRUE, facet_scales = "free", transparency = FALSE, keep_time_zero = FALSE, auto_legend = TRUE)
run |
|
---|---|
compartment | integer. Number of the compartment of the dependent variable. |
dv | character. Name of the dependent variable column in the output tables.
Default is |
predictions | character vector. Name of the predictions column(s) in the
dataset. Default is |
log_dv | logical. Set it to |
facetted | logical. If |
smoothing_method | character. |
smoothing_se | logical. Display confidence interval around smooth? |
identity_line | logical. Draws an identity line. Default is |
x_scale | character. X-axis scale, one of |
y_scale | character. Y-axis scale, one of |
logticks_annotation | logical. If |
facet_scales | character. |
transparency | logical. Plot scatterplot dots with transparency, useful to avoid overplotting with large datasets. Default is FALSE.#' |
keep_time_zero | logical. If |
auto_legend | logical. When |
split_by | character vector. Name of categorical covariates used to split the data. |
A ggplot2 object.
EXAMPLERUN %>% plot_dv_vs_predictions(compartment = 2, predictions = "PRED")EXAMPLERUN %>% plot_dv_vs_predictions(compartment = 2, predictions = "PRED", x_scale = "log", y_scale = "log")EXAMPLERUN %>% plot_dv_vs_predictions(compartment = 2, predictions = "PRED", smoothing_method = "lm")#> Warning: Removed 1 rows containing non-finite values (stat_smooth).#> Warning: Removed 1 rows containing missing values (geom_point).EXAMPLERUN %>% plot_dv_vs_predictions(compartment = 2, predictions = "PRED", smoothing_method = "loess")#> Warning: Removed 1 rows containing non-finite values (stat_smooth).#> Warning: Removed 1 rows containing missing values (geom_point).#> Warning: Removed 1 rows containing missing values (geom_smooth).EXAMPLERUN %>% plot_dv_vs_predictions(compartment = 2, predictions = "PRED", identity_line = FALSE)EXAMPLERUN %>% plot_dv_vs_predictions(compartment = 2, predictions = "PRED", transparency = TRUE)